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Finite-size scaling studies of the O(2) Heisenberg spin 
model in ( D  + 1) dimensions 

K C Wangt and C J Hamer$ 
Schwl of Phpics, The University of New South Wales, PO Box 1, Kensington, NSW 2033, 
Australia 

Received 27 April 1993 

Abstract. The finite-size scaling behaviour of the 0 (2) Heisenberg spin model in ( D  + I )  
dimensions, D = 1 and 2, is computed in the ’low-temperalure’ region using the stochastic 
truncation Monte &io method. The numerical results so obtained agree very well with effective 
Lagrangian theory, and with spin-wave pnturbation theory. 

1. Introduction 

There have recently been important advances in the theory of finite-size scaling, for 
systems with a continuous global symmetry which undergo a first-order phase aansition, or 
spontaneous symmetry breaking. According to Goldstone’s theorem (1961). such systems 
are expected to exhibit Goldstone bosons. The massless Goldstone bosons then control the 
behaviour of the system at low energies or large distances. One may write down a continuum 
‘effective Lagrangian’ for the Goldstone bosons, specified purely in accordance with the 
symmetry properties of the model. For a lattice spin model, universal predictions can 
then be given for the leadiig finite-size conections, low-temperature corrections, and small 
magnetic field corrections to the bulk behaviour, in terms of just two or three parameters: e.g. 
the spin-wave stiffness, the spin-wave velocity and the spontaneous magnetization. Much 
of this was already recognized in earlier work by Cardy and Nightingale (1983). Fisher and 
Privman (1985), Neuberger and Ziman (1989), Fisher (1989) and others. Recently, Gasser 
and Leutwyler (1988), Hasenfratz and Leutwyler (1990) and Hasenfratz and Niedermayer 
(1992) have shown that one may develop a systematic expansion at low energies or large 
volume, based on the fact that the interaction between the Goldstone bosons is ‘soft’, that 
is, weak at low energies. Hence higher-order correction terms can be derived. 

The effective Lagrangian approach thus provides a systematic and universal field 
theoretic description of the behaviour at a first-order transition, for systems with a 
continuous symmetry, on a footing similar to that for second-order transitions. The unknown 
parameters are the renormalized couplings of the Goldstone bosons, rather than a set 
of critical indices. The predictions are generally valid for dimensions D z 2, where 
spontaneous symmetry breaking occurs; but as we shall see, they remain at least partially 
valid even for D = 2. 

In the present work, we set out to test these predictions, via numerical calculations of the 
finite-size scaling behaviour of the 0 (2) Heisenberg spin model in (D+ 1) dimensions. The 
t E-mail address: kcw&@newLphys.unsw.eduau 
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method used is the Monte Carlo technique of symmetrized stochastic buncation, discussed 
recently by Price et a1 (1993) in connection with the Ising model. The algorithm is slow, 
but very accurate, and gives reliable results for lattices of small to moderate size. 

First of all. the predictions of effective Lagrangian theory for this ‘cylindrical’ geometry, 
which were derived by Hasenfratz and Niedermayer (1993), are. summarized. Then the 
complementary predictions of spin-wave theory, which were derived by Hamer and Zheng 
(1992). are. also summarized. Spin-wave theory leads to series expansions for the finitesize 
scaling correction terms, rather than exact expressions; but on the other hand, it does give 
predictions for the lowenergy parameters such as the spin-wave velocity, which effective 
Lagrangian theory cannot. The two approaches are completely consistent with each other, 
up to the order of spin-wave theory calculated so far. 

Comparing the numerical results in the ‘low-temperature’ region of this model with the 
theoretical predictions, the agreement is found to be excellent Even the smallest lattices 
seems to follow the behaviour predicted by the theory. For the ( I  + I)-dimensional model, 
there. is no spontaneous symmetry breaking, and neither theory is strictly applicable: but 
they happen to agree with conformal theory for the non-magnetic ohservables in this case, 
and tum out to work rather well. There is only one independent parameter at leading order 
in this model, which may be taken as the critical index q. A combination of spin-wave 
theory with the theory of Kosterlitz and Thouless (1973, 1974) accounts for the behaviour 
of q quite well. 

For the (2+ 1)dimensional model. there turn out to be two independent low-temperature 
parameters of interest, the spin-wave velocity U and spontaneous magnetization X. Estimates 
of these quantities are obtained, which again agree quite well with spin-wave predictions. 
The behaviour near the second-order phase transition at the end-point of the first-order line 
is also explored. Estimates of the critical indices are obtained, but they do not yet compare 
in accuracy with Euclidean Monte Carlo or series analysis results. 

We conclude that effective Lagrangian theory and spin-wave perturbation theory together 
provide a very good description of the finite-size scaling behaviour of these systems in the 
’low-temperature’ region. 

K C Wang and C J Hamer 

2. Theoretical results 

2.1. Effective Lagrangian theory 

Hasenfratz and Niedermayer (1993) have derived the predictions of effective Lagrangian 
theory in the ‘cylindrical’ geometry appropriate to a Hamiltonian model in (D + 1) 
dimensions. They specifically discussed the quantum Heisenberg antiferromagnet. but the 
results are also applicable to the O ( N )  ferromagnet. The effective Lagrangian for the 
Goldstone bosons (magnons) involves three low-energy parameters, the spin-wave stiffness 
or helicity modulus ps. the spin-wave velocity v ,  and the spontaneous magnetization E. 
Thus Hasenfratz and Niedermayer (1993) predict that at zero temperature, on a lattice of 
LD sites with periodic boundary conditions, the following finitesize scaling behaviours will 
hold 

(i) Finitesize corrections to the ground-state energy density, eo(L) = Eo/LD 
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(iiJ Finite-size spectrum of low-energy excitations, in the zero mode sector 

(iii) Finite-lattice longitudinal susceptibility 

+ 0 (LD+'). 
4E:Zps LZD 

= N ( N  - l)u2 

In quation (2.1), ci!:)2(l) is a numerical structure factor tabulated by Hasenfratz and 
Leutwyler (1990). 

22. Spin-wave theory 

Spin-wave expansions for the 0 (2) Heisenberg spin model in (D+ I) dimensions have been 
discussed by Hamer and Zheng (1992, hereafter referred to as I). The quantum Hamiltonian 
for the model can be written as (Hamer et al 1979) 

where ( i ,  j )  denotes nearest-neighbour pairs. O(i) is an angle variable at site i ,  and J ( i )  is 
the angular momentum operator conjugate to O ( i ) :  

[.!(i), @ ( j ) ]  = -i&,. (2.5) 

The parameter x is related to the inverse temperature in the Euclidean formulation, and h 
is the magnetic field. 

By Taylor expanding the cosine, Fourier transforming, and making a Bogoliubov 
transformation, one obtains an equivalent boson Hamiltonian with interanions which can 
be treated by Rayleigh-ScMdinger perturbation theory, giving rise to an expansion for the 
thermodynamic functions in powers of (xz) - ' /2 ,  where z is the co-ordination number of the 
lattice. 

The spin-wave expansion so obtained agrees precisely, to the order calculated, with the 
finite-size scaling behaviour predicted by effective Lagrangian theory, and in addition it 
provides explicit series expansions for the parameters ,US. U, and E. The results relevant 
here are as follows: 

( i )  Spin-wave velocity: 
onedimensional chain 

U =&-(l/n) - 0 . 0 6 1 2 6 1 1 1 ~ - " ~ + 0 ( ~ - ' )  

two-dimensional triangular lattice 

U = -& - 0.241936 - 0.0214988~-'/~ + O ( x - ' ) ,  

(2.6a) 

(2.66) 

(ii) Spontaneous magnetization: 
onedimensional chain 

E: = O  
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two-dimensional triangular lattice 

K C Wang and C J ,Hamer 

= 1 - 0.178708~-’/~ - 0.008994~-’ - 0.001 1 0 7 ~ - ~ / ~  + O(X-’). (2.76) 

(The spin-wave expansion for the onedimensional chain does not converge; but the 
Mermin-Wagner theorem (1966) assures us that the spontaneous magnetization is strictly 
zero for any finite x ,  in this case.) 

The finite-lattice mass gap is found to be 

(2.8) 

exact to all orders in the perturbative spin-wave expansion, with the only corrections being 
due to non-perturbative effects. Comparing equation (2.8) with (2.2) it follows that an 
identity holds for this mcdelt 

U2 
- = I  (2.9) 
2PS 

1 
Et - Eo = - 

L D  

The spin-wave stiffness was not calculated directly in I, but a brief calculation shows that 
(2.9) is comect, to the first two orders in x - ~ / ’ .  

The fact that the effective Lagrangian theory gives an exact relationship between spin- 
wave velocity and the leading finite-size correction to the ground-state energy, which should 
be m e  to all orders in the spin-wave expansion, implies an interesting diagrammatic identily 
in the spin-wave theory: but we shall not pursue that point here. 

The spin-wave expansion is in fact closely related to the large-volume expansion in 
the effective Lagrangian theory, as discussed by Hasenfratz and Niedermayer (1993). The 
two approaches differ in that the continuum effective theory makes universal predictions in 
terms of unknown parameters v, ps, and E, whereas the spin-wave expansion gives explicit 
expansions for these parameters, for each particular model. 

For the (I  + I)-dimensional model, neither the effective Lagrangian theory nor the 
spin-wave theory are strictly applicable, since there is no spontaneous symmetry breaking 
at finite x. Nevertheless, both give sensible predictions for the non-magnetic observables, 
which agree with each other, provided that equation (2.9) is satisfied, again, to all orders 
in the spin-wave expansion. They also agree with conformal theory for a critical model in 
(1 + I )  dimensions (Cardy 1987). which predicts 

K VC 
Q ( L )  - E O ( W )  - -- 

6L2  
(2.10) 

(2.11) 

provided the conformal anomaly c = 1 (as is well known for the O(2) model in two 
dimensions), and the critical index q is related to the spin-wave velocity U by 

nuq = I .  (2.12) 

t We take this opponunity to cnrrect a serious enor in I,  where an incorrect formula for the mass gap was given, 
resulting in an incorrect relalion b a w n  the spin-wave velocity and the spin-wave stiffness. 
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3. Method and results 

To carry out the Monte Carlo calculations, we used the method of ‘symmetrized’ stochastic 
truncation. which has recently been discussed by Price et a1 (1993). We shall not repeat 
details here. It is based on the power method, in which the Hamiltonian is multiplied 
repeatedly into a trial vector, until the dominant eigenvector is projected out. Price et al 
(1993) treated the Ising model; the differences which arise in connection with the 0 (2) 
model are as follows: 

( i )  Strong coupling basis. In a strong coupling or angular momentum representation, the 
Hamiltonian (2.4) can be rewritten as 

where &(i)  are raising/lowering operators for the spin J at site i :  

[J( i ) ,  J~c;)] = *tJi(i)&j. (3.2) 
The basis states are chosen as eigenstates of the spin J ( i )  at each site, which can take any 
integer value. There are thus an infinite number of spin states at any site, whereas in the 
Ising model there are only two. 

(ii) Spin cutoff. To apply the stochastic truncation method, one must arrange that the 
ground-state is the dominant eigenstate (with the largest eigenvalue magnitude), which can 
be simply achieved by working with the modified Hamiltonian 

W’ = ECut - H (3.3) 
where ECut is a suitable large energy cutoff. To make sure that the system does not converge 
on some unwanted very high spin state instead, we apply a cutoff 

J ( i )  < Jcut (3.4) 

We have checked that Jmt is chosen large enough to have no effect on the present 
calculations, within errors ( Jcut 2 7 for most of the calculations in this paper). 

(iii) Variational guidance. The accuracy of the method is strongly enhanced if a good 
approximation to the ground-state wavefunction can be found to provide variational 
guidance (DeGrand and Potvin 1985, Price et a1 1993). We used a simple one-parameter 
variational wavefunction: 

for this purpose, where the parameter c has to be optimized at each separate coupling. There 
has been no sign in previous applications that this procedure introduces any systematic bias 
into the results. 

(iv) Eflciency. The ‘symmetrization’ procedure is very expensive in computer time, and 
the symmetrized stochastic truncation method is only efficient if the average ‘occupation 
number’ (n) of the basis states in the ensemble is high (Price et al 1993). For most of the 
calculations reported in this paper (n) was of order IO3, but for large lattice sizes and large 
couplings it may become very much lower than this. 
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At each lattice size and each coupling, test mns were performed to check that the energy 
estimates had reached equilibrium, and were independent of ensemble size, and to optimize 
the variational parameter c. No details of these tests will be shown. 

3.1. ( I  + I)-dimensional O(2) model. low-femperafure region 

For the D = 1 case, Monte Carlo data have been obtained for chains of up to 10 sites out 
to couplings x = 8, using periodic boundary conditions. 

I I I 
2 L 6 8 

X 

0 

0 L = 2  
0 L E L  
d L - 8  
L1 LAO 0.3L 2 I x  6 8 

Figure 1. The ground-state energy density fu = a 
function of x. for the ( I  + I)dimensional model. lanice 
sizes L = 2.4.8.10. The line is the spin-wave 1. 
prediction for the bulk limit 

Fgun 2. The ‘specific heat’ S(X)  as a function of 
for the (1 + I).&,,,~,&& ,,,del. ~ ~ r a t i ~ ~  in 

Figure I shows the ground-state energy per site as a function of x. The spin-wave 
prediction for this quantity is 

EO(C0) = -x+- z./z - - - 0.01080x-”* + o(x-l) 
II rz (3.7) 

It can be seen that the finite-lattice values converge towards the spin-wave prediction 

Figure 2 shows the ‘specific heat’ 
in the bulk limit, over pratically the entire range of couplings n > 2. 

(3.8) 

6s a function of x. The spin-wave prediction describes the data quite accurately for x 2 4. 
At around x = 2 (the critical point), the data develop a shoulder, but no divergent peak; 
this is the expected behaviour for a Kosterlitz-Thouless transition. 

We turn next to the finite-size behaviour. Figure 3 shows the ground-state energy density 
as a function of 1/L2, for various couplings x. The data are well fitted by straight lines, as 
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-3  

$ p- --_ _ _ _ _  x-5.0 1 
-3.5 --. 

.._ x = 6.0 

Figure 3. The ground-state energy density €0 a8 a 
function of I /Lz ,  w h a t  L is lhe lartice size, for the 
(1 + 1)dimensional model. StraigM line 6- are shown. 

--- 
o,3 0 0.1 0.2 

1 1  LZ 

predicted by the formula 

(3.9) 

which follows from (2.1) and (2.12). and hence one can extract estimates for eo(w) and q. 
These estimates are listed in table 1 along with the spin-wave predictions. The agreement 
is very good for the ground-state energy. The data for q are about 6% lower than the 
spin-wave predictions. 

Table 1. Comparison of spin-wave predictions wilh values estimated f” Monte Carlo data for 
lhe (1 + I)-dimensional chain Quantities lisled are lhe bulk ground-state energy density foO(o0) 
and the critical index 0. 

Coupling, x 

3.0 4.0 5.0 6.0 

Data -1.5479(3) -23Wl) -3.088(2) -3.897(3) 
Predinion -1.5482(3) -2.3061(3) -3.0930(3) -3.9W3) 
Data 0.1418(5) 0.1200) O.IM(7) 0.096(5) 
Rediction 0.1519(3) 0.1284(3) 0.1130(3) 0.1020(2) 9 

Figure 4 shows the mass gaps as a function of x ,  for different lattice sizes L. They 
level out at a constant value 

1 
FL(x) = - 

L 
(3.10) 

for x 2 4, in excellent agreement with the spin-wave prediction. This behaviour was already 
remarked by Roomany and Wyld (1980) and Hamer and Barber (1980. 1981). 

Figure 5 shows a logarithmic plot of the parallel susceptibility x(L )  as a function of 
lattice size L, at coupling x = 5. The data are well fitted by a straight line, in agreement 
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o.2 t i 
6 8 & x  2 

Figure 4. The mass gap FL(x) as a function of x for 
tbe ( I  + I)-dimensional madel. The straight lines are 
the spin-wave predictions. 

/ 
/ 

5 i /' 

Figure 5. A logarithmic plot of the longitudinal 
susceptibitily XI as a bnction of lattice size L, for tbe 
(1 + 1)dimensional model. A straight line fit is shown. 

with the behaviour expected from finitesize scaling theory 

x(L) - L2-n (3.11) 

and hence one can obtain another estimate of IJ. The result lies about 5 %  above the spin- 
wave prediction in this case. 

Now Kosterlitz and Thouless (1973) and Kosterlitz (1974) have shown that in the 
vicinity of the critical point, IJ approaches a universal value of $: 

7 - $c - a ( x  - s ) " 2  as x + xc . (3.12) 

Following Luck's (1982) analysis for the Euclidean case, we have used equations ( 2 . 6 ~ )  
and (2.12) to calculate a spin-wave expansion for the quantity ($ - q)* as a function of the 
variable x- ' / * :  

(: - IJ)' = & - 0.1 1254x-"* + O.O2533Ox-' + 0.012229~-~'* + O(x-') . (3.13) 

This function should pass linearly through zero at the critical point. Through the order 
given in equation (3.13), the zero occurs at 

xc !Y 2.01 (3.14) 

which agrees very well with the values obtained by numerical methods (Beleulay 1986, 
Allton and Hamer 1988). although i t  is hard to fix the position of a Kosterli&Thouless 
transition to better than a few percent. Figure 6 shows a plot of the numerical values 
obtained here against the prediction (3.13). It can be seen that the numerical results lie 
somewhat above the spin-wave prediction in the vicinity of the critical point. This may 
very well be due to logarithmic corrections to scaling at the critical point (Allton and Hamer 
1988), which are known to occur in the similar case of the XXZ Heisenberg model (Alcaraz 
et ul 1987). They result in extremely slow convergence of the finite-lattice results. 
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Figure 6. A plot of ( a  - q)' against I/&, where 0 
is the critical index, for ihe (I + I)-dimensional model. 
The solid line is the spin-wave prediction. 

* I 

d L.L 

sw _ _ _  0.1 l o  
0 0.2 04 0 6  0.8 

X 

Figure 7. The 'specific heal' E(%) as a function of x for 
Lhe (2+ l)-dimensional model, lattice sizes L = 2.3,4. 
The line is the spin-wave prediction for lhe bulk limir 

3.2. (2 + 1)-dimensional O(2) model, low-femperature region 

For the D = 2 case, numerical results have been calculated for triangular lattices up to 
4 x 4 sites out to couplings x = 1, using periodic boundary conditions. Some results were 
also obtained for the 5 x 5 lattice, but their accuracy was generally not sufficient to justify 
presenting them here. 

The bulk ground-state energy per site obeys the spin-wave prediction 

Q(W) = - 3 ~ +  1.67618~-0.117066-0.00669~-"*+0(~-') (3.15) 

very well for x 2 0.4. The specific heat defined by equation (3.9) is plotted against x 
in figure 7. At large x the results appear to converge towards the spin-wave theory, but 
around x = 0.2 a small but increasing sequence of finite lattice peaks emerges, indicating 
the expected second-order critical point. 

The finite-size behaviour of the ground-state energy density is illustrated in figure 8. 
The data agree well with the predicted form of 

(3.16) 

(where 0.7802 is the structure factor coefficient appropriate to the triangular lattice-see 
the appendix of I) and hence values for c ~ ( m )  and v can be extracted, which are listed in 
table 2, along with the spin-wave predictions. Once again, it can be seen that the spin-wave 
predictions describe the data very well for x 2 0.4. There is no sign of any dramatic change 
in behaviour as the critical point is approached, and equation (3.16) may well still hold at 
the second-order critical point. 
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-0.2 r 1 I . I 

----- X.O.8 

Figure 8. The ground-slate energy density fo as a 
-1-2 function of l /L3 ,  where L is the lattice size, for the 

(2+ I)-dimensional model. Straight Line fits are shown. 0 0.05 0.1 
1 l L l  

Table 2. Comparison of spin-wave predictions with values estimated from Monte Carlo data, 
for the (2 + I)-dimensional Viangulas lattice. Quantities listed are the bulk ground-state energy 
density ~ ( m )  and the spin-wave velocity U. 

Coupling, x 

0.4 0.6 0.8 

Data -0.274(1) -0.628(1) -1.025(2) 
"(" Prediction -0.268(2) -0.627(2) -1.025(1) 

Data 0.925(7) 1.1(1) 1.36(7) 
Prediction 0.8X1) 1.072(7) 1.282(6) " 

Figure 9 shows the finite-lattice mass gap as a function of x .  As in the (1 t 1)- 
dimensional case, it drops steeply and then flattens out at the constant value 

1 
FL(x) = - LZ 

(3.17) 

for larger x ,  in excellent agreement with the spin-wave prediction. 
The parallel susceptibility x ( L )  also appears to agree with the theoretical prediction 

that it should increase like L4, at large coupling x ,  although it becomes somewhat unstable 
and slow to calculate in this region. 

3.3. (2 + 1)-dimensional U(2) model, critical region 

We have attempted to carry out a finite-size scaling analysis of the data in the critical region, 
x = 0.2, in order to estimate the critical parameters. We follow the methods of Price et 
a1 (1993). The pseudo-critical point X L  at lattice size L is defined in the usual way as the 
coupling such that the scaled mass-gap ratio passes through unity 

& ( X )  = 1 (3.18) 
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0.8 0 L.2 
0 L.3 'TI & L=L 

I I I 4 I 
0 0.2 04 0.6 0 . 8  1 

X 

where 

Figure 9. The mass gap F'lx) as a function of x for 
the (2 + 1)dimensional model. The shght lines are 
the spin-wave predictions. 

(3.19) 

F'(X) being the mass gap for lattice sue L. The pseudo-critical points were found by an 
iterative search method for each lattice size L, L = 1, . . . ,4. N e x t  the thermodynamic 
quantities of interest were estimated for both the lattice size L and L - 1 corresponding to 
each pseudocritical point XL. The results are displayed in table 3. 

Table I Finife-IaIIjce dah for the (2 + 1)-dimensional triangular lattice at h e  pseudouitid 
p i n k  XL. The groundatate energy densiiy and its first two derivauw with respect to x, the 
mass gap and ifs fist WO derivatives, and Lhe susceptibility are given. 

XL x2 = 0.185 628(5) xs = 0.213078(7) xd = 0.218038(9) 

L I 2 2 3 3 4 

60 -0.278 442 -0.0727431(6) -0.098 991(2) -0.060 1899(6) -0.064 1301(7) -0.044237(3) 
d -15 -0.878 90(2) -1.032 045)  -0.777 342) -0.811 742) -0.726 75(6) 
g 0.0 -5.7065(4) -5.412(1) -69237(6) -6.951 l(5) -7.917(3) 
F 1 .o 0.500000(4) 0.451 759(9) 0.300825(7) 0.288 712(7) 0.21667(6) 
F' 0.0 -1.9334(1) -1.6202(2) -24995Q) -2.3830(2) -2.983(1) 
F" 0.0 11.492 (2) 11.164(5) 23.271 (6) 23.746 (5) 39.34(5) 
X 2.0 3.728 24(2) 4.457 390) 9.808 77(51 10.530 53(4) 18.483 5(9) 

The sequence of pseudo-critical points converges very rapidly, as in the Ising case, and 
a plot against I/L4 (figure 10) gives an extrapolation to the bulk limit 

x, = 0.2203(3) (3.20) 
which is in reasonable agreement with the result xc = 0.2207(1) obtained from a series 
analysis by Hamer and Guttmann (1989). 
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0.18 
0 0.02 0 . O L  0.06 

1/L& 

Figure 10. The pseudo-critical COUPling XL as a 
function of l/L4, where L is the IaUiCe size, for lhe 
(Zf 1)dimension.d model. The dashed line is lo guide 
the eye. The svaight line is the spin-wave prediction. 

or a 'logarithmic' estimate 

Figure 11. Estimates of y f v  plotted against 1/L2, 
for the (2 + I)-dimensional model. The solid line 
mnnecb the 'logarithmic' &mares. while the dashed 
one wnnecb the 'linear' estimates. 

(3.22) 

where xL(x) is the finite-lattice susceptibility. 
Similar estimates for the ratios l /u,  a/u' can be obtained from the finitelattice beta 

function and specific heat, respectively. As an example, the results for y l u  are plotted 
against I / L 2  in figure 11. Since there are only three points on each line, one can only 
perform a Crude extrapolation to the limit L + M, obtaining final estimates of 

I/u = 1.47(5) or U = 0.68(3) (3.23) 

y / u  = 1.96(5) or y = 1.33(5) (3.24) 

LY/u = 0.2(1) or LY = 0.14(7). (3.25) 
These may be compared with the series estimates of Hamer and Guttmann (1989): 

U = 0.686(3) y = 1.334(5). (3.26) 
It can be seen that our present results are in good agreement with the series estimates, but 
are much less accurate. They are also much less accurate than current Euclidean Monte 
Carlo estimates for this model, such as those of Janke (1990) 

U = 0.670(2) y = 1.316(5) (3.27) 
obtained from lattices of up to 483 sites. However, our results do represent the first 
application of a Monte Carlo method to the Hamiltonian version of this model, as far 
as we are aware. If useful results could be obtained for the 5 x 5 lattice, the exponent 
estimates could be greatly improved. 
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It can be seen that our present results are in good agreement with the series estimates, but 
are much less accurate. They are also much less accurate than current Euclidean Monte 
Carlo estimates for this model, such as those of Janke (1990) 

U = 0.670(2) y = 1.31615) (3.27) 

obtained from lattices of up to 4g3 sites. However, our results do represent the first 
application of a Monte Carlo method to the Hamiltonian version of this model, as far 
as we are aware. If useful results could be obtained for the 5 x 5 lattice, the exponent 
estimates could be greatly improved. 

4. Summary and conclusions 

The method of stochastic truncation has been used to perform numerical Monte Carlo 
calculations of the 0 (2) Heisenberg spin model in (1 + 1) and (2 + I)  dimensions. Our 
main object was to explore the finite-size scaling behaviour of these models in the 'low- 
temperature' or large-x region, and to compare the results with the predictions of effective 
Lagrangian theory (Hasenfratz and Niedermayer 1993) and spin-wave perturbation theory 
(Hamer and Zheng 1992). The geneml conclusion is that the numerical results agree very 
well with the theoretical predictions. 

For the (I  + I)-dimensional model, there is no spontaneous symmetry breaking (Mermin 
and Wagner 1966), and neither of the two theoretical approaches is strictly applicable: but it 
is found that their predictions works rather well for the non-magnetic observables, and agree 
with conformal theory ( M y  1987) where they overlap. The critical index q is related to 
the spin-wave velocity v in this model by 

rrvq = 1 (4.1 ) 
which leaves only one parameter (q, say) to control the 'low-temperature' behaviour. The 
finite-size correction to the ground-state energy is 

and the mass gap is 
1 
L E , - & = -  (4.3) 

XI. - L=-" (4.4) 

exact to all orders in the spin-wave expansion. The finite-lattice susceptibility is 

Equations (4.2) and (4.4) have been used to obtain estimates of q as a function of coupling 
x .  These estimates are presented in table 1 and figure 6: they agree well with the predictions 
of spin-wave theory. 

For the (2+ 1)-dimensional model, we have found a different relationship between the 
parameters of the effective Lagrangian: 

I (4.5) 

where ps is the spin-wave stiffness. Then the finite-size correction to the ground-state 
energy is 

v* 
2PS 
-=  

0.7189~ 
L3 

co(L) - EO(03) - -- a s L + w  
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and the mass gap is 

1 
L2 

E1 - Eo = - (4.7) 

exact to all orders in spin-wave theory; while the susceptibility obeys 

X L " P L 4  as L +  03 (4.8) 

where is the spontaneous magnetization. The resulting estimates of U are displayed in 
table 2, and again agree quite well with the spin-wave predictions. 

We have also obtained some estimates of the critical parameters at the second-order 
transition for the ( 2 +  I)-dimensional model, using the same methods as Price er al (1993). 
The results were somewhat crude., but were in rough agreement with the series estimates of 
Hamer and Guttmann (1989). 

Euclidean Monte Carlo simulations of the 0 (2) model have been carried out recently 
on lattices of enormous size: e.g. L = 512 by Gupta et a[ (1988) and L = 1200 by Janke 
and Nather (1991) for the 2D model, while for the 3D model Hasenbusch and Meyer (1990) 
went up to L = 16, while Janke (1990) reached L = 48. Biferale and Petronzio (1989) 
performed an analysis of q in the low-temperature region of the U) model, and obtained a 
behaviour much the same as that seen here. 

One could hardly contemplate treating lattices of such size with the stochastic truncation 
method. But our results confirm the conclusion of Price et al (1993). that stochastic 
truncation is a reliable and accurate method for Hamiltonian lattices of small to moderate 
size; and as is by now well known, a surprising amount can be learned by careful analysis 
of the finitesize scaling behaviour of such systems. 
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